Partisan Disbelief in Polarized Societies: Evidence from South Korea and the U.S.

Shinnosuke Kikuchi ¹ Daiki Kishishita ² Yesola Kweon ³ Yuko Kasuya ⁴

¹UCSD
²Hitotsubashi
³SKKU
⁴Keio

November 18, 2025 UCSD PELG

- Partisan conflict in a noisy information environment
 - Populist Radical Right Parties, rising affective polarization
 - Fake news, disinformation, and contested information everywhere

- Partisan conflict in a noisy information environment
 - Populist Radical Right Parties, rising affective polarization
 - Fake news, disinformation, and contested information everywhere
- People misperceive what out-groups think and believe
 - Widespread disbelief about others' views and intentions
 - Ahler (2014), Bursztyn & Yang (2022), Druckman et al. (2022)

- Partisan conflict in a noisy information environment
 - Populist Radical Right Parties, rising affective polarization
 - Fake news, disinformation, and contested information everywhere
- People misperceive what out-groups think and believe
 - Widespread disbelief about others' views and intentions
 - Ahler (2014), Bursztyn & Yang (2022), Druckman et al. (2022)
- Disagreement extends to basic factual claims
 - e.g. Immigration, crime, vaccines,...
 - These misbeliefs persist; people rarely update even when corrected

- Partisan conflict in a noisy information environment
 - Populist Radical Right Parties, rising affective polarization
 - Fake news, disinformation, and contested information everywhere
- People misperceive what out-groups think and believe
 - Widespread disbelief about others' views and intentions
 - Ahler (2014), Bursztyn & Yang (2022), Druckman et al. (2022)
- Disagreement extends to basic factual claims
 - e.g. Immigration, crime, vaccines,...
 - These misbeliefs persist; people rarely update even when corrected
- Today's focus
 - Disbelief in out-group knowledge
 - In-group bias in information processing

- 1. Fact: Disbelief in out-group knowledge:
 - People underestimate the out-group's knowledge by $15{\sim}17$ pt on average

- 1. Fact: Disbelief in out-group knowledge:
 - People underestimate the out-group's knowledge by $15{\sim}17$ pt on average
- 2. Fact: In-group bias in information processing:
 - People put more weight on judgments of in-groups

- 1. Fact: Disbelief in out-group knowledge:
 - People underestimate the out-group's knowledge by $15{\sim}17$ pt on average
- 2. Fact: In-group bias in information processing:
 - People put more weight on judgments of in-groups
- 3. Correcting disbelief reduces (often completelty eliminates) in-group bias

- 1. Fact: Disbelief in out-group knowledge:
 - People underestimate the out-group's knowledge by 15 \sim 17 pt on average
- 2. Fact: In-group bias in information processing:
 - People put more weight on judgments of in-groups
- 3. Correcting disbelief reduces (often completelty eliminates) in-group bias
- 4. Correcting disbelief reduces affective polarization, albeit inconclusive

Our Contribution

 Misperception towards out-groups: Bursztyn and Yang 2022, Ahler and Sood 2018, Dias et al 2025, Ahler 2014, Druckman et al 2022, Dimant 2024 New types: Partisan disbelief in knowledge

Our Contribution

- Misperception towards out-groups: Bursztyn and Yang 2022, Ahler and Sood 2018, Dias et al 2025, Ahler 2014, Druckman et al 2022, Dimant 2024 New types: Partisan disbelief in knowledge
- In-group bias in information selection/processing:
 - Selective exposure: Alesina et al 2020, Peterson et al 2021, Faia et al 2024 Chopra et al 2024
 - Processing (across contents): Lord et al 1979, Taber and Lodge 2006, Taber et al 2009, Thaler, 2024
 - Processing (across sources): Zhang and Rand 2023, Moorthy 2025

Even in non-partisan facts + Correcting disbelief decreareses this bias

Our Contribution

- Misperception towards out-groups: Bursztyn and Yang 2022, Ahler and Sood 2018, Dias et al 2025, Ahler 2014, Druckman et al 2022, Dimant 2024 New types: Partisan disbelief in knowledge
- In-group bias in information selection/processing:
 - Selective exposure: Alesina et al 2020, Peterson et al 2021, Faia et al 2024 Chopra et al 2024
 - Processing (across contents): Lord et al 1979, Taber and Lodge 2006, Taber et al 2009, Thaler, 2024
 - Processing (across sources): Zhang and Rand 2023, Moorthy 2025

Even in non-partisan facts + Correcting disbelief decreareses this bias

Mitigating affective polarization: Ahler and Sood 2018, Lees and Cujara 2020,...
 Roles of disbelief?

Today's Plan

Surveys, Background

Study 1. Baseline Evidence of Disbelief

Survey Design and Hypotheses

Existence of Disbelief on Out-group's Knowledge

Study 2. Correcting Disbelief

Survey Design and Hypotheses

H1: Treatment Effects on Disbelief

H2: Existence of In-group Bias in Information Processing

H3: Treatment Effects of Correcting Disbelief on In-group Bias

H4: Treatment Effects on Correcting Disbelief on Polarization

Conclusion

Today's Plan

Surveys, Background

Study 1. Baseline Evidence of Disbelief

Survey Design and Hypotheses

Existence of Disbelief on Out-group's Knowledge

Study 2. Correcting Disbelief

Survey Design and Hypotheses

H1: Treatment Effects on Disbelief

H2: Existence of In-group Bias in Information Processing

H3: Treatment Effects of Correcting Disbelief on In-group Bias

H4: Treatment Effects on Correcting Disbelief on Polarization

Conclusion

Surveys

- US and South Korea
- Two surveys
 - Study 1 (N≈1,500): Document disbelief in out-group knowledge
 - Study 2 (N≈4,200):
 - Document in-group bias in belief updating
 - Experiment if correcting disbelief reduces the in-group bias
- Recruit participants through an online survey panel provider

Backgroud/Accroym/Abbreviation

- RP: Right-wing parties
 - US: Republican Party-curent majority + president
 - SK: People's Power Party (PPP)
- LP: Left-wing parties
 - US: Democratic Party
 - SK: Democratic Party of Korea (DPK)-current majority + president
- NP: Non-partisans
- Drop others in SK
 - 273/300 in the National Assembly are PPP or DPK

Today's Plan

Surveys, Background

Study 1. Baseline Evidence of Disbelief Survey Design and Hypotheses Existence of Disbelief on Out-group's Knowledge

Study 2. Correcting Disbelief

Survey Design and Hypotheses

H1: Treatment Effects on Disbelief

H2: Existence of In-group Bias in Information Processing

H3: Treatment Effects of Correcting Disbelief on In-group Bias

H4: Treatment Effects on Correcting Disbelief on Polarization

Conclusion

Today's Plan

Surveys, Background

Study 1. Baseline Evidence of Disbelief Survey Design and Hypotheses

Existence of Disbelief on Out-group's Knowledge

Study 2. Correcting Disbelief

Survey Design and Hypotheses

H1: Treatment Effects on Disbelief

H2: Existence of In-group Bias in Information Processing

H3: Treatment Effects of Correcting Disbelief on In-group Bias

H4: Treatment Effects on Correcting Disbelief on Polarization

Conclusion

Study 1: Survey Structure (N=1,500)

- Ask to evaluate (T or F) 8 factual questions:
- Examples
 - "New Zealand is located in the Middle East."
 - "The country's GDP growth rate in the previous year was lower than 7%."
- Ask to give confidence level
- Then, for each question, ask to estimate the accuracy rates for three groups
 - $p_{i,j}^t$: individual *i*'s estimate on group *t*'s accuracy rate on task *j*
 - $t \in \{RP, LP, NP\}, j = 1, ..., 8$

▶ Sum. Stat.

East.	
O True (1)	
C False (2)	
Q27 We would like you to estimate how confider true-or-false question. For example, if you believ correct, please choose 50. If you are completely choose 100.	ve there is a 50% chance that your answer is
	0 10 20 30 40 50 60 70 80 90 100
Accuracy of your answer ()	
Q28 Next, we would like you to estimate the pegroups who correctly judge whether the state	
everyone in group X makes the correct judgeme	ent, the percentage of group X would be 100%.
	0 10 20 30 40 30 60 70 60 90 100
Republican Party supporters ()	
Democratic Party supporters ()	

Q26 Please judge whether the sentence is true or false: New Zealand is located in the Middle

Hypotheses: Disbelief in out-group knowledge

- Target-based Disbelief
 - RP supporters believe that RP supporters are more knowledgeable
 - LP supporters believe that LP supporters are more knowledgeable
 - Non-partisans believe that RP and LP supporters are equally knowledgeable

Hypotheses: Disbelief in out-group knowledge

- Target-based Disbelief
 - RP supporters believe that RP supporters are more knowledgeable
 - LP supporters believe that LP supporters are more knowledgeable
 - Non-partisans believe that RP and LP supporters are equally knowledgeable
- Perceiver-based Disbelief
 - RP supporters are seen as more knowledgeable by RP than LP
 - LP supporters are seen as more knowledgeable by LP than RP
 - NP supporters are seen as equally knowledgeable by LP and RP

Hypotheses: Disbelief in out-group knowledge

- Target-based Disbelief
 - RP supporters believe that RP supporters are more knowledgeable
 - LP supporters believe that LP supporters are more knowledgeable
 - Non-partisans believe that RP and LP supporters are equally knowledgeable
- Perceiver-based Disbelief
 - RP supporters are seen as more knowledgeable by RP than LP
 - LP supporters are seen as more knowledgeable by LP than RP
 - NP supporters are seen as equally knowledgeable by LP and RP
- Today: focus on Target-based Disbelief (both are almost identical)

Today's Plan

Surveys, Background

Study 1. Baseline Evidence of Disbelief

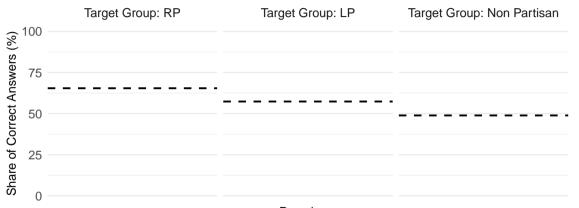
Survey Design and Hypotheses

Existence of Disbelief on Out-group's Knowledge

Study 2. Correcting Disbelief

Survey Design and Hypotheses

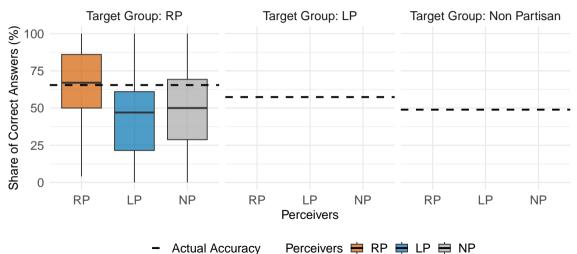
H1: Treatment Effects on Disbelief

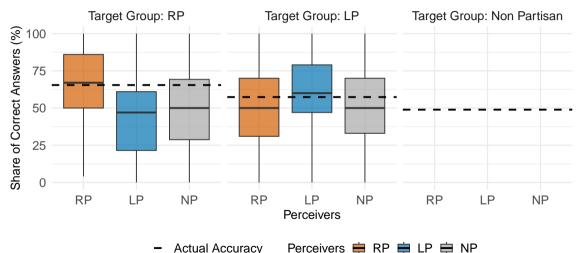

H2: Existence of In-group Bias in Information Processing

H3: Treatment Effects of Correcting Disbelief on In-group Bias

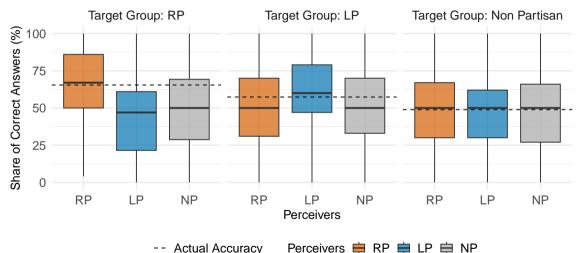
H4: Treatment Effects on Correcting Disbelief on Polarization

Conclusion


Fact 3: The country's nominal GDP growth rate in the previous year was lower than 7%.

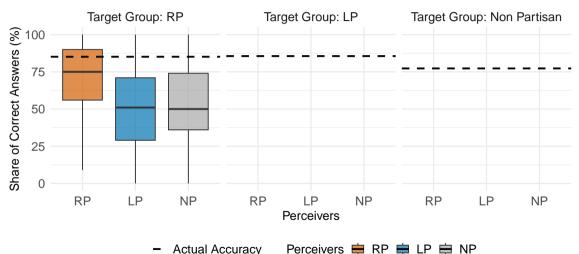

Perceivers

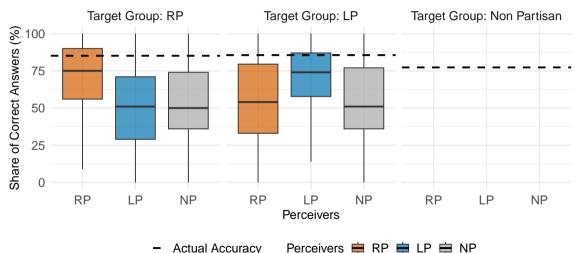
Actual Accuracy


Fact 3: The country's nominal GDP growth rate in the previous year was lower than 7%.

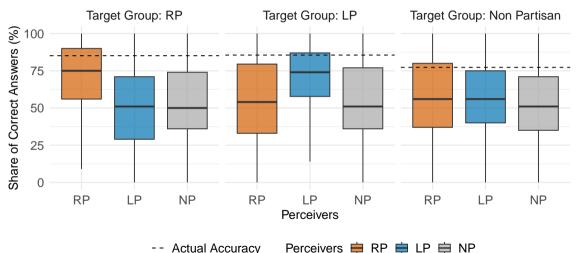
Fact 3: The country's nominal GDP growth rate in the previous year was lower than 7%.

Fact 3: The country's nominal GDP growth rate in the previous year was lower than 7%.


Fact 3: The country's nominal GDP growth rate in the previous year was lower than 5%.


Perceivers

Actual Accuracy


Fact 3: The country's nominal GDP growth rate in the previous year was lower than 5%.

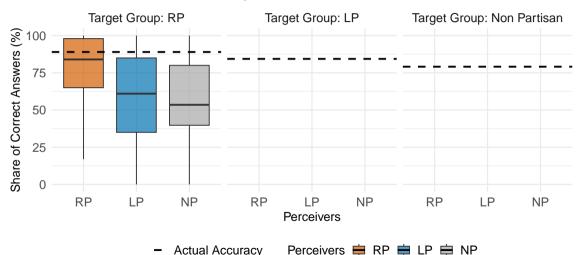
Fact 3: The country's nominal GDP growth rate in the previous year was lower than 5%.



Fact 3: The country's nominal GDP growth rate in the previous year was lower than 5%.

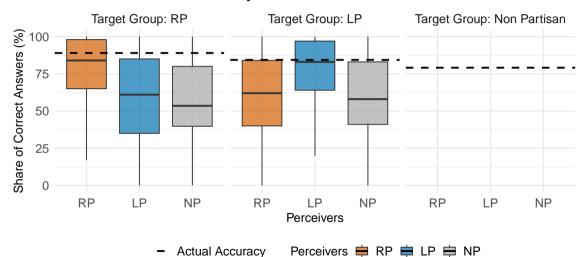
US Fact 5: New Zealand is in the Middle East? Sum State

Fact 5: New Zealand is a country located in the Middle East.

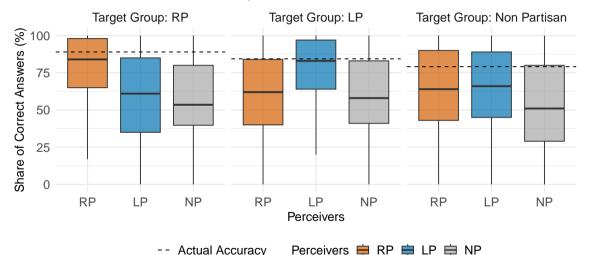


Perceivers

Actual Accuracy


US Fact 5: New Zealand is in the Middle East? Sum. Stat.

Fact 5: New Zealand is a country located in the Middle East.


US Fact 5: New Zealand is in the Middle East? Sum State

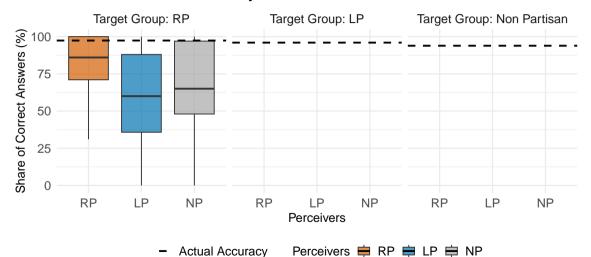
Fact 5: New Zealand is a country located in the Middle East.

US Fact 5: New Zealand is in the Middle East? Sum State

Fact 5: New Zealand is a country located in the Middle East.

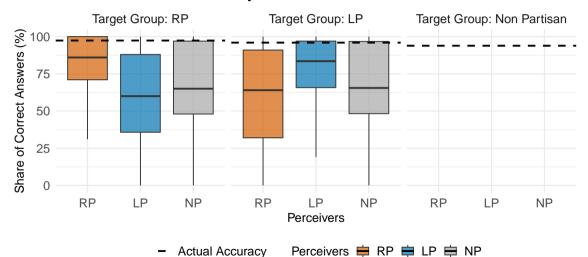
SK Fact 5: New Zealand is in the Middle East? Sum State

Fact 5: New Zealand is a country located in the Middle East.

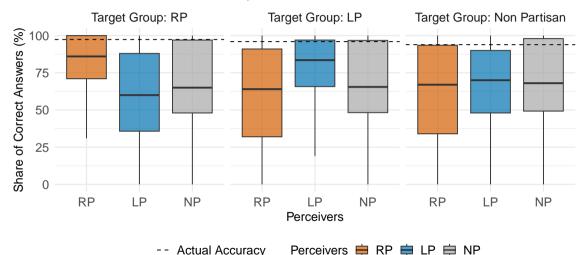


Perceivers

Actual Accuracy


SK Fact 5: New Zealand is in the Middle Fast? Sum State

Fact 5: New Zealand is a country located in the Middle East.


SK Fact 5: New Zealand is in the Middle East? Sum State

Fact 5: New Zealand is a country located in the Middle East.

SK Fact 5: New Zealand is in the Middle East? Sum State

Fact 5: New Zealand is a country located in the Middle East.

- $p_{i,j}^t$: Accuracy rate of group $t \in \{RP, LP\}$ in task j perceived by i, g(i) i's group

- $p_{i,i}^t$: Accuracy rate of group $t \in \{RP, LP\}$ in task j perceived by i, g(i) i's group
- Target-based Partisan Disbelief (given perceiver i)

$$\rho_{i,j}^{t} = \beta_{1} \mathbb{1}\{t = RP\} + \eta_{i} + \eta_{j} + \varepsilon_{i,j}^{t}$$

- $p_{i,j}^t$: Accuracy rate of group $t \in \{RP, LP\}$ in task j perceived by i, g(i) i's group
- Target-based Partisan Disbelief (given perceiver i)

$$p_{i,j}^t = \beta_1 \mathbb{1}\{t = RP\} + \eta_i + \eta_j + \varepsilon_{i,j}^t$$

- Expect $\beta_1 > 0$ if g(i) = RP and $\beta_1 < 0$ if g(i) = LP

- $p_{i,i}^t$: Accuracy rate of group $t \in \{RP, LP\}$ in task j perceived by i, g(i) i's group
- Target-based Partisan Disbelief (given perceiver i)

$$p_{i,j}^t = \beta_1 \mathbb{1}\{t = RP\} + \eta_i + \eta_j + \varepsilon_{i,j}^t$$

- Expect $\beta_1 > 0$ if g(i) = RP and $\beta_1 < 0$ if g(i) = LP
- Null for Non-partisan (given perceiver i, g(i) = NP)

$$\rho_{i,j}^t = \frac{\beta_2}{1}\{t = RP\} + \eta_i + \eta_j + \varepsilon_{i,j}^t$$

- $p_{i,j}^t$: Accuracy rate of group $t \in \{RP, LP\}$ in task j perceived by i, g(i) i's group
- Target-based Partisan Disbelief (given perceiver i)

$$p_{i,j}^t = \beta_1 \mathbb{1}\{t = RP\} + \eta_i + \eta_j + \varepsilon_{i,j}^t$$

- Expect $\beta_1 > 0$ if g(i) = RP and $\beta_1 < 0$ if g(i) = LP
- Null for Non-partisan (given perceiver i, g(i) = NP)

$$\rho_{i,j}^t = \frac{\beta_2}{1}\{t = RP\} + \eta_i + \eta_j + \varepsilon_{i,j}^t$$

- Expect $\beta_2 = 0$

Country	SK	SK	SK	US	US	US
Perceiver	RP	LP	NP	RP	LP	NP
	(1)	(2)	(3)	(4)	(5)	(6)
Target - DD						

larget = RP

Target = LP

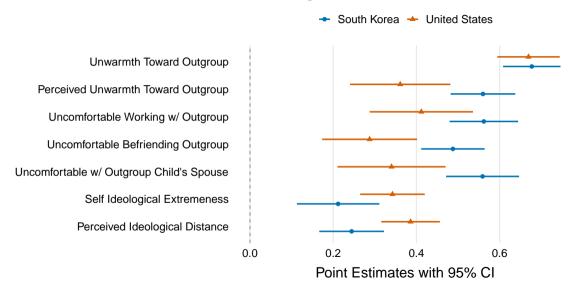
Observations 8232 14304 10992 13752 13512 8736

Country	SK	SK	SK	US	US	US
Perceiver	RP	LP	NP	RP	LP	NP
	(1)	(2)	(3)	(4)	(5)	(6)
Target = RP	0.174					
	(0.012)					
Target = LP						
Observations	8232	14304	10992	13752	13512	8736

Country	SK	SK	SK	US	US	US
Perceiver	RP	LP	NP	RP	LP	NP
	(1)	(2)	(3)	(4)	(5)	(6)
Target = RP	0.174					
	(0.012)					
Target = LP		0.151				
		(0.007)				
Observations	8232	14304	10992	13752	13512	8736

Country	SK	SK	SK	US	US	US
Perceiver	RP	LP	NP	RP	LP	NP
	(1)	(2)	(3)	(4)	(5)	(6)
Target = RP	0.174		0.005			
	(0.012)		(0.007)			
Target = LP		0.151				
		(0.007)				
Observations	8232	14304	10992	13752	13512	8736

Country	SK	SK	SK	US	US	US
Perceiver	RP	LP	NP	RP	LP	NP
	(1)	(2)	(3)	(4)	(5)	(6)
Target = RP	0.174		0.005	0.156		0.008
	(0.012)		(0.007)	(0.009)		(0.009)
Target = LP		0.151			0.148	
		(0.007)			(0.009)	
Observations	8232	14304	10992	13752	13512	8736


Correltion with Affective Polarization

 Define "disbelief": simple difference between estimates for in-group and out-group

disbelief_{i,j}
$$\equiv p_{i,j}^{g(i)} - p_{i,j}^{g(i)'}$$

disbelief_i $\equiv \frac{1}{8} \sum_{i=1}^{8} \text{disbelief}_{i,j}$

- Regress different polarization measures on disbelief;
 - Polarization measures are standardized to [0,1]

Disbelief Correlates w/ Ideological/Affective Polarization

Summary of Study 1

- In fact, both partisans are equally knowledgeable
- However, there are about 15 points of disbelief in out-group knowledge
- Non-partisans equally perceive knowledge of RP and LP
- Correlates with ideological and affective polarization

Today's Plan

Surveys, Background

Study 1. Baseline Evidence of Disbelief
Survey Design and Hypotheses
Existence of Disbelief on Out-group's Knowledge

Study 2. Correcting Disbelief

Survey Design and Hypotheses

H1: Treatment Effects on Disbelief

H2: Existence of In-group Bias in Information Processing

H3: Treatment Effects of Correcting Disbelief on In-group Bias

H4: Treatment Effects on Correcting Disbelief on Polarization

Conclusion

Today's Plan

Surveys, Background

Study 1. Baseline Evidence of Disbelief

Survey Design and Hypotheses

Existence of Disbelief on Out-group's Knowledge

Study 2. Correcting Disbelief Survey Design and Hypotheses

H1: Treatment Effects on Disbelief

H2: Existence of In-group Bias in Information Processing

H3: Treatment Effects of Correcting Disbelief on In-group Bias

H4: Treatment Effects on Correcting Disbelief on Polarization

Conclusion

Goals of Study 2

Given the baseline results in Study 1, we want to

- Document in-group bias in Information Processing
 - e.g., RP overweighs the opinion of RP over that of LP

Goals of Study 2

Given the baseline results in Study 1, we want to

- Document in-group bias in Information Processing
 - e.g., RP overweighs the opinion of RP over that of LP
- Run experiments if correcting disbelief reduces the in-group bias
 - Study 1 already shows RP and LP are, in fact, equally knowledgeable
 - Treatment = telling the fact above

1. Demographic questions

- 1. Demographic questions
- 2. Pre-treatment judgement questions (2 factual)-same as in Study 1

- 1. Demographic questions
- 2. Pre-treatment judgement questions (2 factual)-same as in Study 1
- 3. Treatment (Random at indiv. level)
 - Information that both partisans are equally knowledgeable (based on Study 1)
 - No information given

- 1. Demographic questions
- 2. Pre-treatment judgement questions (2 factual)-same as in Study 1
- 3. Treatment (Random at indiv. level)
 - Information that both partisans are equally knowledgeable (based on Study 1)
 - No information given
- 4. Post-treatment judgement questions with **signals** (details: next slide) (Random at indiv. level within each question)
 - In-group signal: tells that in-groups know the correct answers
 - Out-group signal: tells that out-groups know the correct answers

- 1. Demographic questions
- 2. Pre-treatment judgement questions (2 factual)-same as in Study 1
- 3. Treatment (Random at indiv. level)
 - Information that both partisans are equally knowledgeable (based on Study 1)
 - No information given
- 4. Post-treatment judgement questions with **signals** (details: next slide) (Random at indiv. level within each question)
 - In-group signal: tells that in-groups know the correct answers
 - Out-group signal: tells that out-groups know the correct answers
- 5. Questions about affective polarization

- 1. Demographic questions
- 2. Pre-treatment judgement questions (2 factual)-same as in Study 1
- 3. Treatment (Random at indiv. level)
 - Information that both partisans are equally knowledgeable (based on Study 1)
 - No information given
- 4. Post-treatment judgement questions with **signals** (details: next slide) (Random at indiv. level within each question)
 - In-group signal: tells that in-groups know the correct answers
 - Out-group signal: tells that out-groups know the correct answers
- 5. Questions about affective polarization

Only keep RP/LP w/ pre-treatment disbelief > 5pt (2305 in SK, 2792 in US)

- 1. Pre-signal (same as Study 1)
 - Judge T/F + give confidence (0-100)
 - Estimate the accuracy rate of RP/LP

- 1. Pre-signal (same as Study 1)
 - Judge T/F + give confidence (0-100)
 - Estimate the accuracy rate of RP/LP
- 2. Signal (Random at indiv. level within each question)
 - "According to previous surveys, the majority of RP says False"
 - "According to previous surveys, the majority of LP says False"

- 1. Pre-signal (same as Study 1)
 - Judge T/F + give confidence (0-100)
 - Estimate the accuracy rate of RP/LP
- 2. Signal (Random at indiv. level within each question)
 - "According to previous surveys, the majority of RP says False"
 - "According to previous surveys, the majority of LP says False"
- 3. Post-signal
 - Re-judge T/F + give confidence (0-100)

Example: "New Zealand is in the Middle East" (False)

- 1. Pre-signal (same as Study 1)
 - Judge T/F + give confidence (0-100)
 - Estimate the accuracy rate of RP/LP
- 2. Signal (Random at indiv. level within each question)
 - "According to previous surveys, the majority of RP says False"
 - "According to previous surveys, the majority of LP says False"
- 3. Post-signal
 - Re-judge T/F + give confidence (0-100)

What we want: See how/if they update their beliefs (judgement & confidence)

Hypotheses:

Hypotheses:

- H1: Treatment decreases post-treatment disbelief
 - Not just a manipulation check
 - Pre- and post-treatment questions are different

Hypotheses:

- H1: Treatment decreases post-treatment disbelief
 - Not just a manipulation check
 - Pre- and post-treatment questions are different
- H2: Partisans have in-group bias in information processing

Hypotheses:

- H1: Treatment decreases post-treatment disbelief
 - Not just a manipulation check
 - Pre- and post-treatment questions are different
- H2: Partisans have in-group bias in information processing
- H3: Treatment decreases the in-group bias in information processing

Hypotheses:

- H1: Treatment decreases post-treatment disbelief
 - Not just a manipulation check
 - Pre- and post-treatment questions are different
- H2: Partisans have in-group bias in information processing
- H3: Treatment decreases the in-group bias in information processing
- H4: Treatment decreases affective polarization

Surveys, Background

Study 1. Baseline Evidence of Disbelief
Survey Design and Hypotheses
Existence of Disbelief on Out-group's Knowledge

Study 2. Correcting Disbelief

Survey Design and Hypotheses

H1: Treatment Effects on Disbelief

H2: Existence of In-group Bias in Information Processing

H3: Treatment Effects of Correcting Disbelief on In-group Bias

H4: Treatment Effects on Correcting Disbelief on Polarization

Conclusion

H1: Treatment Reduces Disbelief by 20% - 35%

- Define averge out-group disbelief for post-treatment facts disbelief
- We run

$$\mathsf{disbelief}_{i}^{\mathsf{post}} = \alpha T_{i} + \varepsilon_{i}$$

	(1) SK	(2) US
Treatment		
Observations	2305	2792
Mean of outcome	0.232	0.195

H1: Treatment Reduces Disbelief by 20% - 35%

- Define averge out-group disbelief for post-treatment facts disbelief
- We run

$$\mathsf{disbelief}_{i}^{\mathsf{post}} = \alpha T_{i} + \varepsilon_{i}$$

	(1)	(2)
	SK	US
Treatment	-0.050	-0.076
	(0.010)	(0.009)
Observations	2305	2792
Mean of outcome	0.232	0.195

Surveys, Background

Study 1. Baseline Evidence of Disbelief

Survey Design and Hypotheses

Existence of Disbelief on Out-group's Knowledge

Study 2. Correcting Disbelief

Survey Design and Hypotheses

H1: Treatment Effects on Disbelief

H2: Existence of In-group Bias in Information Processing

H3: Treatment Effects of Correcting Disbelief on In-group Bias

H4: Treatment Effects on Correcting Disbelief on Polarization

Conclusion

Measurement of In-group Bias in Information Processing

For individual *i* and task *j*, construct two types of dummy variables

1. Correct Judgement: $y_{i,j}^J \equiv \mathbb{1}\{J_{i,j}^1 - J_{i,j}^0 > 0\};$

Measurement of In-group Bias in Information Processing

For individual *i* and task *j*, construct two types of dummy variables

- 1. Correct Judgement: $y_{i,j}^{J} \equiv \mathbb{1}\{J_{i,j}^{1} J_{i,j}^{0} > 0\};$
 - $J_{i,j}^0$: Correctness before signals ($J_{i,j}^0 = 1$ if Correct and = 0 if Wrong)
 - $J_{i,i}^1$: Correctness after signals

Measurement of In-group Bias in Information Processing

For individual i and task j, construct two types of dummy variables

1. Correct Judgement: $y_{i,j}^{J} \equiv \mathbb{1}\{J_{i,j}^{1} - J_{i,j}^{0} > 0\};$

- 2. Confidence towards Correct Answer: $y_{i,j}^{\mu} \equiv \mathbb{1}\{\mu_{i,j}^{1} \mu_{i,j}^{0} > 0\};$
 - $\mu_{i,i}^0$: Confidence towards Correct answers before signals

$$\mu_{i,j}^0 = egin{cases} rac{a_{i,j}^0}{100} & ext{if } J_{i,j}^0 = 1 \ 1 - rac{a_{i,j}^0}{100} & ext{if } J_{i,j}^0 = 0 \end{cases}$$

where $a_{i,j}^0 \in [0, 100]$ is confidence level for their answer

- $\mu_{i,j}^1$: Confidence towards Correct answers after signals

Specification: (i: indiv., j: task)

$$y_{i,j} = \beta \mathbb{1}\{\text{In-group Signal}\}_{i,j} + \eta_j + \varepsilon_{i,j}$$

- $y_{i,j}$: measure of Information Processing, $y_{i,j}^J$ or $y_{i,j}^\mu$
- $\mathbb{1}\{\text{In-group Signal}\}_{i,j}$: dummy if in-group signal
 - e.g.) If R, "The majority of R says this is True..." is an in-group signal
- Expect $\beta > 0$

$$y_{i,j} = \beta \mathbb{1}\{ \text{In-group Signal} \}_{i,j} + \eta_j + \varepsilon_{i,j}$$

	(1)	(2)	(3)	(4)
	SK	SK	US	US
	Dummy	Continuous	Dummy	Continuous
In-Group Signal				
Observations	3417	3417	4221	4221
Mean of outcome	0.102	0.424	0.170	0.481

► Education Signal ► Sum. Stat.

$$y_{i,j} = \beta \mathbb{1}\{\text{In-group Signal}\}_{i,j} + \eta_j + \varepsilon_{i,j}$$

	(1)	(2)	(3)	(4)
	SK	SK	US	US
	Dummy	Continuous	Dummy	Continuous
In-Group Signal	0.058			
	(0.010)			
Observations	3417	3417	4221	4221
Mean of outcome	0.102	0.424	0.170	0.481

► Education Signal ► Sum. Stat.

$$y_{i,j} = \beta \mathbb{1}\{\text{In-group Signal}\}_{i,j} + \eta_j + \varepsilon_{i,j}$$

	(1)	(2)	(3)	(4)
	SK	SK	US	US
	Dummy	Continuous	Dummy	Continuous
In-Group Signal	0.058	0.078		
	(0.010)	(800.0)		
Observations	3417	3417	4221	4221
Mean of outcome	0.102	0.424	0.170	0.481

$$y_{i,j} = \beta \mathbb{1}\{\text{In-group Signal}\}_{i,j} + \eta_j + \varepsilon_{i,j}$$

	(1)	(2)	(3)	(4)
	SK	SK	US	US
	Dummy	Continuous	Dummy	Continuous
In-Group Signal	0.058	0.078	0.007	0.041
	(0.010)	(800.0)	(0.009)	(0.012)
Observations	3417	3417	4221	4221
Mean of outcome	0.102	0.424	0.170	0.481

Surveys, Background

Study 1. Baseline Evidence of Disbelief
Survey Design and Hypotheses
Existence of Disbelief on Out-group's Knowledge

Study 2. Correcting Disbelief

Survey Design and Hypotheses

H1: Treatment Effects on Disbelief

H2: Existence of In-group Bias in Information Processing

H3: Treatment Effects of Correcting Disbelief on In-group Bias

H4: Treatment Effects on Correcting Disbelief on Polarization

Conclusion

- Study 1: Accuracy rates are the same across partisans for factual questions

- Study 1: Accuracy rates are the same across partisans for factual questions
- Pre-treatment task of Study 2: individuals again guess the accuracy rate

- Study 1: Accuracy rates are the same across partisans for factual questions
- Pre-treatment task of Study 2: individuals again guess the accuracy rate
- Keep only those who have disbelief (>5pt) on Out-group Knowlege (64%)

- Study 1: Accuracy rates are the same across partisans for factual questions
- Pre-treatment task of Study 2: individuals again guess the accuracy rate
- Keep only those who have disbelief (>5pt) on Out-group Knowlege (64%)
- Treatment (after pre-treatment task)
 - e.g.) "You think that R are more knowledgeable than D. This is wrong."

- Study 1: Accuracy rates are the same across partisans for factual questions
- Pre-treatment task of Study 2: individuals again guess the accuracy rate
- Keep only those who have disbelief (>5pt) on Out-group Knowlege (64%)
- Treatment (after pre-treatment task)
 - e.g.) "You think that R are more knowledgeable than D. This is wrong."
- See if Treatment reduces in-group bias in Information Processing

Specification ($s_{i,j} = I$: In-group signal)

$$y_{i,j} = \beta_1 \mathbb{1}\{s_{i,j} = I\} + \beta_2 T_i + \beta_3 \left(\mathbb{1}\{s_{i,j} = I\} \times T_i\right) + \eta_j + \varepsilon_{i,j}$$

- Expect $\beta_3 < 0$ (given that $\beta_1 > 0$)

▶ Sum. Stat.

$y_{i,j} = eta_1 \mathbb{1}\{oldsymbol{s}_{i,j} = I\} + eta_2 oldsymbol{T}_i + eta_3 \left(\mathbb{1}\{oldsymbol{s}_{i,j} = I\} imes oldsymbol{T}_i ight) + \eta_j + arepsilon_{i,j}$						
(1) (2) (3) (4)						
SK	SK	US	US			
Dummy	Continuous	Dummy	Continuous			

In-Group Signal

Treatment

In-Group Signal x Treatment

Observations	6915	6915	8376	8376
Mean of outcome	0.103	0.421	0.165	0.484

$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$						
(1) (2) (3) (4)						
	SK	SK	US	US		
	Dummy	Continuous	Dummy	Continuous		
In-Group Signal	0.058					
	(0.010)					
Treatment	0.016					
	(0.009)					
In-Group Signal x Treatment	-0.031					
	(0.002)					
Observations	6915	6915	8376	8376		
Mean of outcome	0.103	0.421	0.165	0.484		
6 61 1						

Sum. Stat.

$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$						
(1) (2) (3) (4)						
	SK	SK	US	US		
	Dummy	Continuous	Dummy	Continuous		
In-Group Signal	0.058	0.078				
	(0.010)	(0.009)				
Treatment	0.016	0.023				
	(0.009)	(0.019)				
In-Group Signal x Treatment	-0.031	-0.060				
	(0.002)	(0.028)				
Observations	6915	6915	8376	8376		
Mean of outcome	0.103	0.421	0.165	0.484		

Sum. Stat.

$oldsymbol{y}_{i,j} = eta_1 \mathbb{1}\{oldsymbol{s}_{i,j} = oldsymbol{I}\} + eta_2 oldsymbol{I}_i + eta_3 \left(\mathbb{1}\{oldsymbol{s}_{i,j} = oldsymbol{I}\} imes oldsymbol{I}_i ight) + \eta_j + arepsilon_{i,j}$					
(1) (2) (3) (4					
	SK	SK	US	US	
	Dummy	Continuous	Dummy	Continuous	
In-Group Signal	0.058	0.078	0.007	0.041	
	(0.010)	(0.009)	(0.010)	(0.012)	
Treatment	0.016	0.023	-0.018	0.023	
	(0.009)	(0.019)	(0.008)	(0.019)	
In-Group Signal x Treatment	-0.031	-0.060	0.018	-0.036	
	(0.002)	(0.028)	(0.007)	(0.015)	
Observations	6915	6915	8376	8376	
Mean of outcome	0.103	0.421	0.165	0.484	

[▶] Sum. Stat.

Surveys, Background

Study 1. Baseline Evidence of Disbelief
Survey Design and Hypotheses
Existence of Disbelief on Out-group's Knowledge

Study 2. Correcting Disbelief

Survey Design and Hypotheses

H1: Treatment Effects on Disbelief

H2: Existence of In-group Bias in Information Processing

H3: Treatment Effects of Correcting Disbelief on In-group Bias

H4: Treatment Effects on Correcting Disbelief on Polarization

Conclusion

H4: Effects on Correcting Disbelief on Polarization

Specification (LHS: Combined measures of affective polarization)

$$pol_i = \gamma T_i + \varepsilon_i$$

- **Unfav**orable measure (unwarmth measure)
- **Uncomf**ortable with out-groups' colleagues/friends/spouses of children...

H4: Effects on Correcting Disbelief on Polarization

Specification (LHS: Combined measures of affective polarization)

$$pol_i = \gamma T_i + \varepsilon_i$$

- **Unfav**orable measure (unwarmth measure)
- **Uncomf**ortable with out-groups' colleagues/friends/spouses of children...

	(1)	(2)	(3)	(4)
	SK	SK	US	US
	Unfav	Uncomf	Unfav	Uncomf
Treatment	-0.025	-0.002	-0.081	-0.023
	(0.012)	(0.012)	(0.013)	(0.016)
Observations	2305	2305	2792	2792
Mean of outcome	0.528	0.433	0.493	0.271

Surveys, Background

Study 1. Baseline Evidence of Disbelief

Survey Design and Hypotheses

Existence of Disbelief on Out-group's Knowledge

Study 2. Correcting Disbelief

Survey Design and Hypotheses

H1: Treatment Effects on Disbelief

H2: Existence of In-group Bias in Information Processing

H3: Treatment Effects of Correcting Disbelief on In-group Bias

H4: Treatment Effects on Correcting Disbelief on Polarization

Conclusion

Conclusion

- Widespread disbelief about out-group knowledge for factual questions
- In-group bias in Information Processing
- Correcting the disbelief can reduce the in-group bias

Summary Statistics

Further Results
Balanced Test
Conspiracy Theory
Education Signal

Appendix: Disbelief on All Facts

Study 1: Summary Statistics • Back

SK	SK	SK	US	US	US
RP	LP	NP	RP	LP	NP
0.41	0.49	0.60	0.48	0.60	0.55
0.83	0.77	0.76	0.51	0.54	0.37
0.54	0.42	0.36	0.53	0.48	0.38
0.74	0.74	0.73	0.66	0.62	0.57
0.81	0.78	0.71	0.73	0.71	0.65
343	596	458	573	563	364
	0.41 0.83 0.54 0.74 0.81	RP LP 0.41 0.49 0.83 0.77 0.54 0.42 0.74 0.74 0.81 0.78	RP LP NP 0.41 0.49 0.60 0.83 0.77 0.76 0.54 0.42 0.36 0.74 0.74 0.73 0.81 0.78 0.71	RP LP NP RP 0.41 0.49 0.60 0.48 0.83 0.77 0.76 0.51 0.54 0.42 0.36 0.53 0.74 0.74 0.73 0.66 0.81 0.78 0.71 0.73	RP LP NP RP LP 0.41 0.49 0.60 0.48 0.60 0.83 0.77 0.76 0.51 0.54 0.54 0.42 0.36 0.53 0.48 0.74 0.74 0.73 0.66 0.62 0.81 0.78 0.71 0.73 0.71

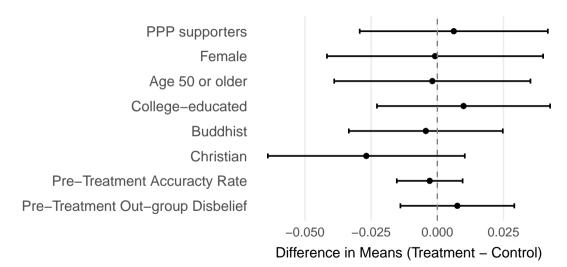
Study 2: Summary Statistics • Back

	SK	SK	SK	US	US	US
	Treated	Control	Diff	Treated	Control	Diff
RP Supporters Ratio	0.256	0.250	0.006	0.543	0.519	0.024
			(0.018)			(0.019)
Female Ratio	0.481	0.482	-0.001	0.488	0.532	-0.044
			(0.021)			(0.019)
College-educated Ratio	0.804	0.795	0.010	0.541	0.528	0.013
			(0.017)			(0.019)
Age (50+) Ratio	0.709	0.711	-0.002	0.669	0.695	-0.026
			(0.019)			(0.018)
Pre Accuracy Rate	0.955	0.958	-0.003	0.848	0.834	0.014
			(0.006)			(0.009)
Pre Disbelief	0.350	0.343	0.008	0.341	0.336	0.005
			(0.011)			(0.010)
Observations	1166	1139		1385	1407	

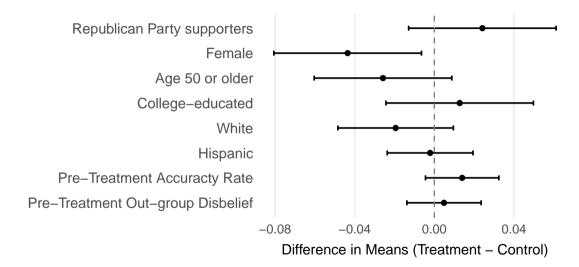
Summary Statistics

Further Results
Balanced Test
Conspiracy Theory
Education Signal

Appendix: Disbelief on All Facts


Summary Statistics

Further Results
Balanced Test


Conspiracy Theory Education Signal

Appendix: Disbelief on All Facts

H3: Balanced Test across Control and Treated

H3: Balanced Test across Control and Treated

Today's Plan

Summary Statistics

Further Results

Balanced Test

Conspiracy Theory

Education Signal

Appendix: Disbelief on All Facts

H1-A: Treatment Reduces Disbelief in Conspiracy Theory

	(1)	(2)
	SK	US
Treatment	-0.028	-0.066
	(0.015)	(0.013)
Observations	2305	2792
Mean of outcome	0.343	0.239

Today's Plan

Summary Statistics

Further Results

Balanced Test Conspiracy Theory

Education Signal

Appendix: Disbelief on All Facts

H2: Partisan bias is larger than education-based bias

South Korea:

- Compare information processing based on college vs non-college signals
- Restrict samples to control group whose pre-signal answers were wrong

	(1)	(2)	(3)	(4)	(5)	(6)
	Dummy	Dummy	Dummy	Cont.	Cont	Cont
	Educ	Educ	Party	Educ	Educ	Party
In-Group Signal		-0.004	0.173		-0.024	0.140
		(0.006)	(0.016)		(0.001)	(0.021)
College Signal	0.007			0.000		
	(0.001)			(0.022)		
Observations	1185	1185	1133	1185	1185	1133
Mean of outcome	0.070	0.070	0.309	0.257	0.257	0.530

H2: Partisan bias is larger than education-based bias

United States:

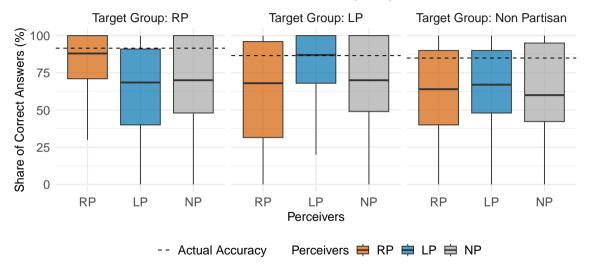
- Compare information processing based on college vs non-college signals
- Restrict samples to control group whose pre-signal answers were wrong

	(1)	(2)	(3)	(4)	(5)	(6)
	Dummy	Dummy	Dummy	Cont	Cont	Cont
	Educ	Educ	Party	Educ	Educ	Party
In-Group Signal		-0.038	0.021		-0.038	0.090
		(0.038)	(0.021)		(0.014)	(0.017)
College Signal	0.032			0.057		
	(0.027)			(0.030)		
Observations	827	827	1544	827	827	1544
Mean of outcome	0.522	0.522	0.466	0.606	0.606	0.532

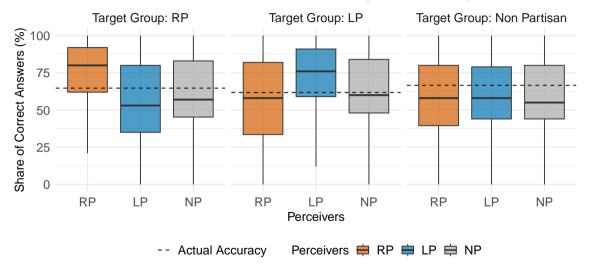
Today's Plan

Summary Statistics

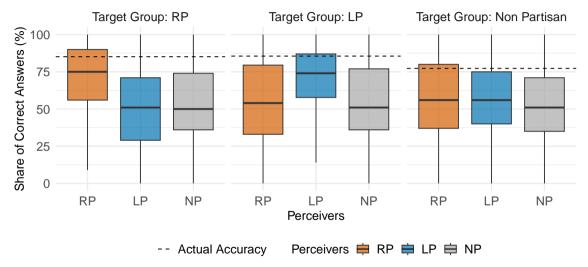
Further Results

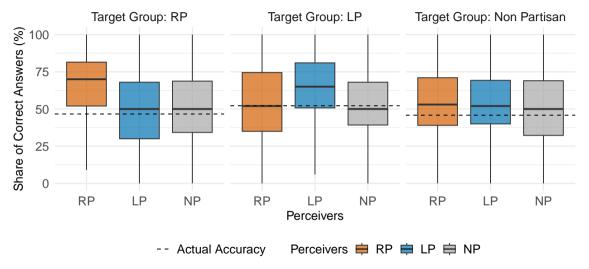

Balanced Test

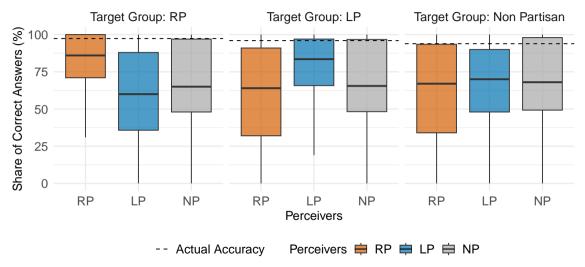
Conspiracy Theory

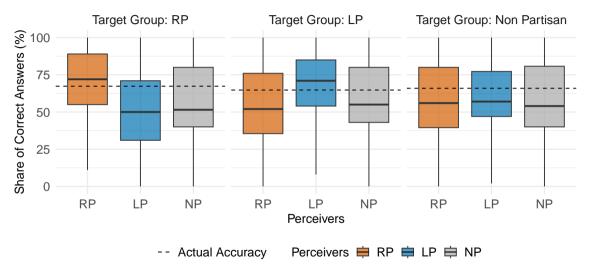

Education Signal

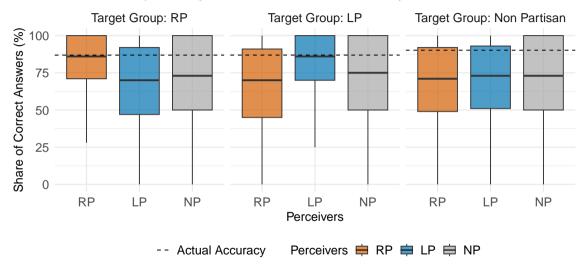
Appendix: Disbelief on All Facts

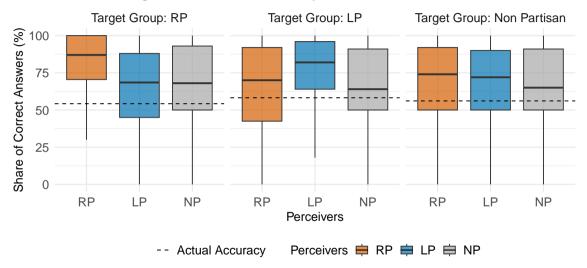

Fact 1: The term of office of the National Assembly is 2 years.

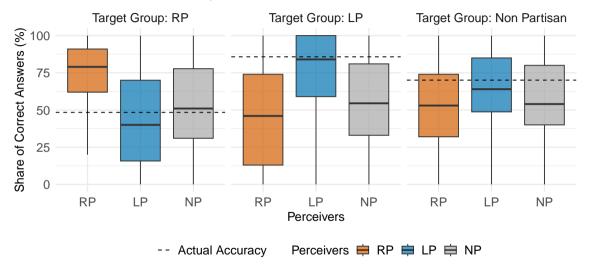

Fact 2: To revise the constitution, more than half of pro-votes are required in a referendu

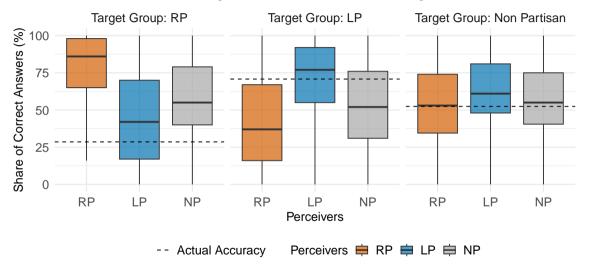

Fact 3: The country's nominal GDP growth rate in the previous year was lower than 5%.

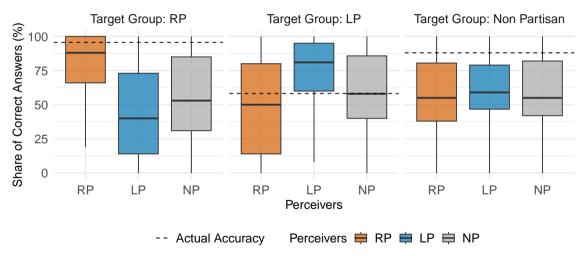

Fact 4: For every hundred working-age people, there are forty old-age people who is 65

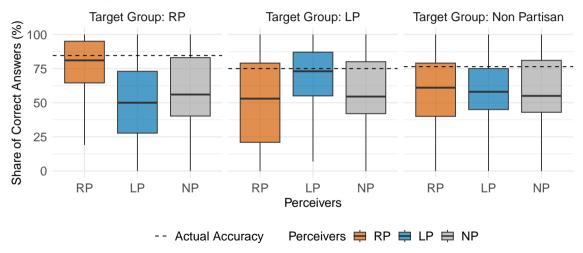

Fact 5: New Zealand is a country located in the Middle East.

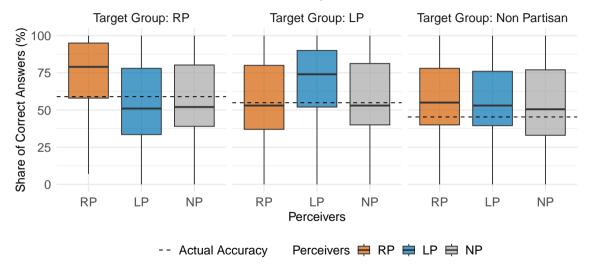

Fact 6: iPhone was invented before 2000.

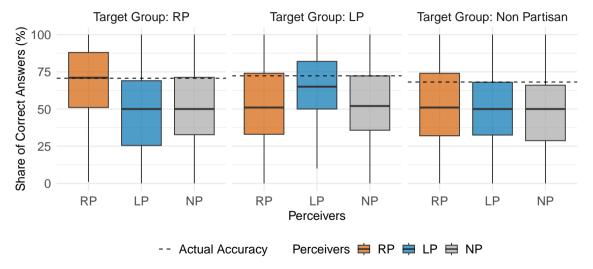

Fact 7: It is stipulated by law that one must be at least 19 years old to drink alcohol.

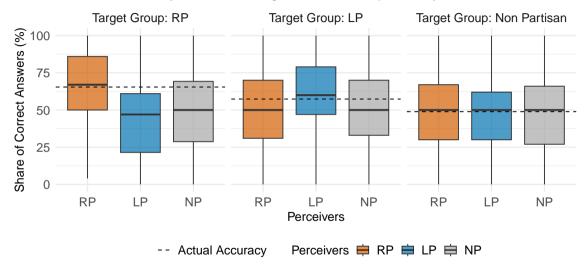

Fact 8: The highest mountain in the country is Hallasan Mountain.

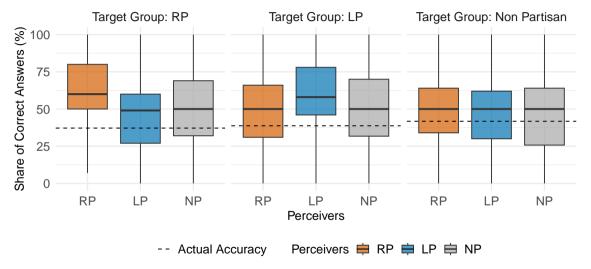

Fact 9: There were widespread election fraud in the 2020 and 2024 elections.

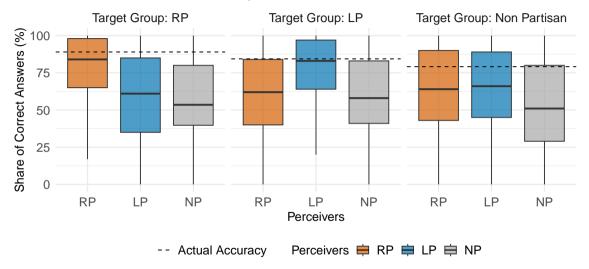

Fact 10: China is infiltrating South Korean institutions, aiming to undermine the nation's

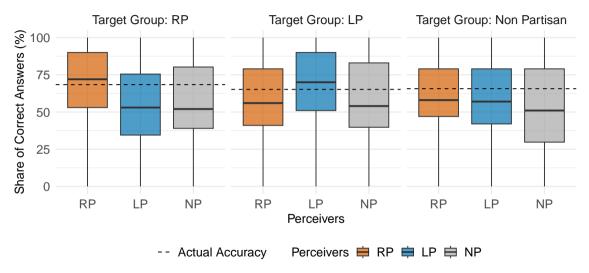

Fact 11: The Supreme Court disqualified Lee from the presidential election in collaboration with Yoon Suk Yeol.

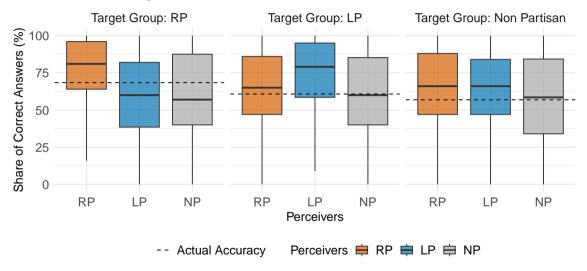

Fact 12: U.S. government controls major political decisions in South Korea, including opposition crackdowns.

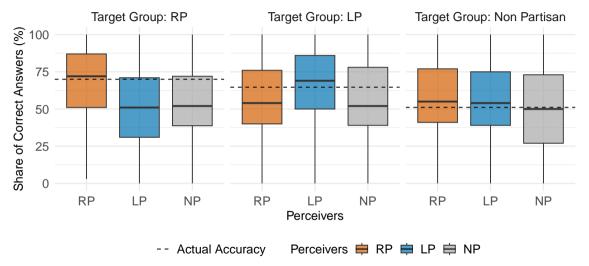

Fact 1: The term of office of the Senate is 4 years.

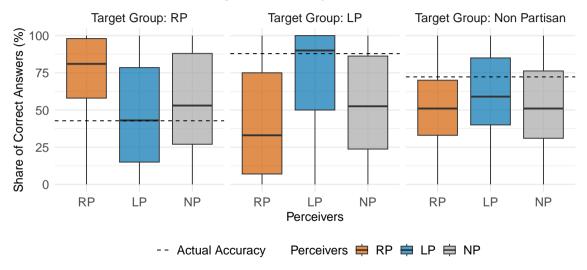

Fact 2: To revise the Constitution, approval from more than three-fourths of the state leg


Fact 3: The country's nominal GDP growth rate in the previous year was lower than 7%.

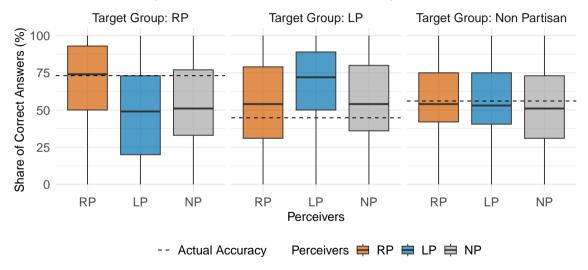

Fact 4: For every hundred working-age people, there are forty old-age people who are 6

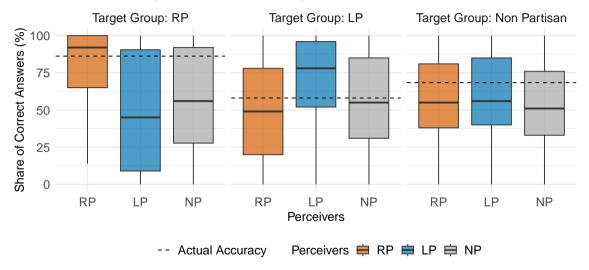

Fact 5: New Zealand is a country located in the Middle East.


Fact 6: iPhone was invented before 2000.


Fact 7: The largest state in the United States is Alaska.


Fact 8: The highest mountain in the United States is Denali (formerly known as Mt. McKir


Fact 9: The Democratic Party stole the 2020 presidential election.


Fact 10: Climate change is a hoax created to push socialist policies and destroy America

Fact 11: The Republican administration initiated the Iraq war for oil interests.

Fact 12: The Republicans stole the 2024 presidential election.

